Multiscale Dimensionality Reduction Based on Diffusion Wavelets
نویسندگان
چکیده
Many machine learning data sets are embedded in high-dimensional spaces, and require some type of dimensionality reduction to visualize or analyze the data. In this paper, we propose a novel framework for multiscale dimensionality reduction based on diffusion wavelets. Our approach is completely data driven, computationally efficient, and able to directly process non-symmetric neighborhood relationships without ad-hoc symmetrization. The superior performance of our approach is illustrated using several synthetic and real-world data sets.
منابع مشابه
Multiscale Manifold Learning
Many high-dimensional data sets that lie on a lowdimensional manifold exhibit nontrivial regularities at multiple scales. Most work in manifold learning ignores this multiscale structure. In this paper, we propose approaches to explore the deep structure of manifolds. The proposed approaches are based on the diffusion wavelets framework, data driven, and able to directly process directional nei...
متن کاملDiffusion-driven Multiscale Analysis on Manifolds and Graphs: top-down and bottom-up constructions
Classically, analysis on manifolds and graphs has been based on the study of the eigenfunctions of the Laplacian and its generalizations. These objects from differential geometry and analysis on manifolds have proven useful in applications to partial differential equations, and their discrete counterparts have been applied to optimization problems, learning, clustering, routing and many other a...
متن کاملMultiscale Analysis of Data Sets with Diffusion Wavelets
Analysis of functions of manifolds and graphs is essential in many tasks, such as learning, classification, clustering. The construction of efficient decompositions of functions has till now been quite problematic, and restricted to few choices, such as the eigenfunctions of the Laplacian on a manifold or graph, which has found interesting applications. In this paper we propose a novel paradigm...
متن کاملOn Mesh Editing, Manifold Learning, and Diffusion Wavelets
We spell out a formal equivalence between the naive Laplacian editing and semi-supervised learning by bi-Laplacian Regularized Least Squares. This allows us to write the solution to Laplacian mesh editing in a closed form, based on which we introduce the Generalized Linear Editing (GLE). GLE has both naive Laplacian editing and gradient based editing as special cases. GLE allows using diffusion...
متن کاملMultiscale Analysis of Document Corpora Based on Diffusion Models
We introduce a nonparametric approach to multiscale analysis of document corpora using a hierarchical matrix analysis framework called diffusion wavelets. In contrast to eigenvector methods, diffusion wavelets construct multiscale basis functions. In this framework, a hierarchy is automatically constructed by an iterative series of dilation and orthogonalization steps beginning with an initial ...
متن کامل